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1 Compact Sets in R

Throughout this section, let (xn) be a sequence in R. Recall that a subsequence (xnk
)∞k=1

of (xn) means that (nk)
∞
k=1 is a sequence of positive integers satisfying n1 < n2 < · · · <

nk < nk+1 < · · · , that is, such sequence (nk) can be viewed as a strictly increasing function
n : k ∈ {1, 2, ..} 7→ nk ∈ {1, 2, ...}.
In this case, note that for each positive integer N , there is K ∈ N such that nK ≥ N and thus
we have nk ≥ N for all k ≥ K.

Let us first recall the following two important theorems in real line.

Theorem 1.1 Nested Intervals Theorem Let (In := [an, bn]) be a sequence of closed and
bounded intervals. Suppose that it satisfies the following conditions.

(i) : I1 ⊇ I2 ⊇ I3 ⊇ · · · .

(ii) : limn(bn − an) = 0.

Then there is a unique real number ξ such that
⋂∞
n=1 In = {ξ}.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3]. 2

Theorem 1.2 (Bolzano-Weierstrass Theorem) Every bounded sequence in R has a con-
vergent subsequence.

Proof: See [1, Theorem 3.4.8]. 2

Definition 1.3 A subset A of R is said to be compact (more precise, sequentially compact) if
every sequence in A has a convergent subsequence with the limit in A.

We are now going to characterize the compact subsets of R. The following is an important
notation in mathematics.

Definition 1.4 A subset A is said to be closed in R if it satisfies the condition:

if (xn) is a sequence in A and limxn exists, then limxn ∈ A.

Example 1.5 (i) {a}; [a, b]; [0, 1] ∪ {2}; N; the empty set ∅ and R all are closed subsets of
R.
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(ii) (a, b) and Q are not closed.

The following Proposition is one of the basic properties of a closed subset which can be directly
shown by the definition. So, the proof is omitted here.

Proposition 1.6 Let A be a subset of R. The following statements are equivalent.

(i) A is closed.

(ii) For each element x ∈ R \A, there is δx > 0 such that (x− δx, x+ δx) ∩A = ∅.

The following is an important characterization of a compact set in R. Warning: this result is
not true for the so-called metric spaces in general.

Theorem 1.7 Let A be a closed subset of R. Then the following statements are equivalent.

(i) A is compact.

(ii) A is closed and bounded.

Proof: It is clear that the result follows if A = ∅. So, we assume that A is non-empty.
For showing (i)⇒ (ii), assume that A is compact.
We first claim that A is closed. Let (xn) be a sequence in A. Then by the compactness of A,
there is a convergent subsequence (xnk

) of (xn) with limk xnk
∈ A. So, if (xn) is convergent,

then limn xn = limk xnk
∈ A. Therefore, A is closed.

Next, we are going to show the boundedness of A. Suppose that A is not bounded. Fix an
element x1 ∈ A. Since A is not bounded, we can find an element x2 ∈ A such that |x2−x1| > 1.
Similarly, there is an element x3 ∈ A such that |x3 − xk| > 1 for k = 1, 2. To repeat the same
step, we can obtain a sequence (xn) in A such that |xn − xm| > 1 for m 6= n. From this,
we see that the sequence (xn) does not have a convergent subsequence. In fact, if (xn) has a
convergent subsequence (xnk

). Put L := limk xnk
. Then we can find a pair of sufficient large

positive integers p and q with p 6= q such that |xnp − L| < 1/2 and |xnq − L| < 1/2. This
implies that |xnp − xnq | < 1. It leads to a contradiction because |xnp − xnq | > 1 by the choice
of the sequence (xn). Thus, A is bounded.
It remains to show (ii)⇒ (i). Suppose that A is closed and bounded.
Let (xn) be a sequence in A. Thus, (xn). Then the Bolzano-Weierstrass Theorem assures that
there is a convergent subsequence (xnk

). Then by the closeness of A, limk xnk
∈ A. Thus A is

compact.
The proof is finished.
2

For convenience, we call a collection of open intervals {Jα : α ∈ Λ} an open intervals cover
of a given subset A of R, where Λ is an arbitrary non-empty index set, if each Jα is an open
interval (not necessary bounded) and

A ⊆
⋃
α∈Λ

Jα.
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Theorem 1.8 Heine-Borel Theorem: Any closed and bounded interval [a, b] satisfies the
following condition:

(HB) Given any open intervals cover {Jα}α∈Λ of [a, b], we can find finitely many Jα1 , .., JαN

such that [a, b] ⊆ Jα1 ∪ · · · ∪ JαN

Proof: Suppose that [a, b] does not satisfy the above Condition (HB). Then there is an open
intervals cover {Jα}α∈Λ of [a, b] but it it has no finite sub-cover. Let I1 := [a1, b1] = [a, b] and
m1 the mid-point of [a1, b1]. Then by the assumption, [a1,m1] or [m1, b1] cannot be covered
by finitely many Jα’s. We may assume that [a1,m1] cannot be covered by finitely many Jα’s.
Put I2 := [a2, b2] = [a1,m1]. To repeat the same steps, we can obtain a sequence of closed and
bounded intervals In = [an, bn] with the following properties:

(a) I1 ⊇ I2 ⊇ I3 ⊇ · · · · · · ;

(b) limn(bn − an) = 0;

(c) each In cannot be covered by finitely many Jα’s.

Then by the Nested Intervals Theorem, there is an element ξ ∈
⋂
n In such that limn an =

limn bn = ξ. In particular, we have a = a1 ≤ ξ ≤ b1 = b. So, there is α0 ∈ Λ such that ξ ∈ Jα0 .
Since Jα0 is open, there is ε > 0 such that (ξ − ε, ξ + ε) ⊆ Jα0 . On the other hand, there is
N ∈ N such that aN and bN in (ξ − ε, ξ + ε) because limn an = limn bn = ξ. Thus we have
IN = [aN , bN ] ⊆ (ξ − ε, ξ + ε) ⊆ Jα0 . It contradicts to the Property (c) above. The proof is
finished.
2

Remark 1.9 The assumption of the closeness and boundedness of an interval in Heine-Borel
Theorem is essential.
For example, notice that {Jn := (1/n, 1) : n = 1, 2...} is an open interval covers of (0, 1) but
you cannot find finitely many Jn’s to cover the open interval (0, 1).

The following is a very important feature of a compact set.

Theorem 1.10 Let A be a subset of R. Then the following statements are equivalent.

(i) Heine-Borel property: For any open intervals cover {Jα}α∈Λ of A, we can find finitely
many Jα1 , .., JαN such that A ⊆ Jα1 ∪ · · · ∪ JαN .

(ii) A is compact.

(iii) A is closed and bounded.

Proof: The result will be shown by the following path

(i)⇒ (ii)⇒ (iii)⇒ (i).

For (i) ⇒ (ii), assume that the condition (i) holds but A is not compact. Then there is a
sequence (xn) in A such that (xn) has no subsequent which has the limit in A. Put X =
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{xn : n = 1, 2, ...}. Then X is infinite. Also, for each element a ∈ A, there is δa > 0 such that
Ja := (a−δa, a+δa)∩X is finite. Indeed, if there is an element a ∈ A such that (a−δ, a+δ)∩A
is infinite for all δ > 0, then (xn) has a convergent subsequence with the limit a. On the other
hand, we have A ⊆

⋃
a∈A Ja. Then by the compactness of A, we can find finitely many a1, ..., aN

such that A ⊆ Ja1 ∪ · · · ∪ JaN . So we have X ⊆ Ja1 ∪ · · · ∪ JaN . Then by the choice of Ja’s, X
must be finite. This leads to a contradiction. Therefore, A must be compact.
The implication (ii)⇒ (iii) follows from Theorem 1.7 at once.
It remains to show (iii)⇒ (i). Suppose that A is closed and bounded. Then we can find a closed
and bounded interval [a, b] such that A ⊆ [a, b]. Now let {Jα}α∈Λ be an open intervals cover of
A. Notice that for each element x ∈ [a, b] \A, there is δx > 0 such that (x− δx, x+ δx)∩A = ∅
since A is closed by using Proposition 2.4. If we put Ix = (x− δx, x+ δx) for x ∈ [a, b]\A, then
we have

[a, b] ⊆
⋃
α∈Λ

Jα ∪
⋃

x∈[a,b]\A

Ix.

Using the Heine-Borel Theorem 1.8, we can find finitely many Jα’s and Ix’s, say Jα1 , ..., JαN

and Ix1 , ..., IxK , such that A ⊆ [a, b] ⊆ Jα1 ∪ · · · ∪ JαN ∪ Ix1 ∪ · · · ∪ IxK . Note that Ix ∩ A = ∅
for each x ∈ [a, b] \A by the choice of Ix. Therefore, we have A ⊆ Jα1 ∪ · · · ∪ JαN and hence A
is compact.
The proof is finished. 2

Remark 1.11 In fact, the condition in Theorem 1.10(i) is the usual definition of a compact
set for a general topological space. More precise, if a set A satisfies the Definition 1.4, then A
is said to be sequentially compact. Theorem 1.10 tells us that the notation of the compactness
and the sequentially compactness are the same as in the case of a subset of R. However, these
two notation are different for a general topological space.

Strongly recommended: take the courses: MATH 3060; MATH3070 for the next step.

2 Appendix: Open subsets of R

Definition 2.1 Let V be a subset of R.

(i) A point c ∈ V is called an interior point of V if there is r > 0 such that (c− r, c+ r) ⊆ V .

(ii) V is said to be an open subset of R is for every element in V is an interior point of V .
In this case, if x0 ∈ V , then V is called an open neighborhood of the point x0.

Example 2.2 With the notation as above, we have

(i) All open intervals are open subsets of R.

(ii) ∅ and R are open subsets.

(iii) Any closed and bounded interval is not an open subset.

(iv) The set of all rational numbers Q is neither open nor closed subset.
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Proposition 2.3 A non-empty subset A of R is open if and only if there is sequence of open
intervals In = (an, bn) for n = 1, 2, ... such that A =

⋃∞
n=1 In and In ∩ Im = ∅ for m 6= n.

Proof: Assume that A is an open subset. Notice that Q = R. Since A is open, we see that
A ∩ Q is also a non-empty countable subset. Let A ∩ Q = {x1, x2, ....}. For each xk, put
Ik :=

⋃
{J : xk ∈ J and J is an open interval}. Then X =

⋃∞
k=1 Ik. On the other hand, we

notice that Ik is also any open interval (Why??). From this, we see that Ik∩Ij = ∅ or Ik = Ij .
Thus, we can find a subsequence (xnk

) such that Ink
∩ Inj = ∅ for k 6= j. Thus the sequence of

disjoint open intervals (Ink
)∞k=1 that we want.

The converse is clear. 2

Recall that a point c ∈ R is called a limit point (or cluster point) of a subset A of R if for
any δ > 0, we have (c− δ, c+ δ) ∩A 6= ∅.
Moreover, A is said to be a closed subset of R if A contains all its limit points. Let us recall
the following useful fact that we have used many times.

Proposition 2.4 Let A be a subset of R. Then the following statements are equivalent.

(i) A is closed.

(ii) If (xn) is a sequence in A and limxn exists, then limxn ∈ A.

The following an important relation between the notion of openness and closeness.

Proposition 2.5 A subset A of R is open if and only if its complement Ac = R \ A is closed
in R.

Proof: For (⇒), we assume that A is open first. If Ac does not have the limit points, then the
set Ac is clearly a closed set by the definition. Now let c be a limit point of Ac. 2
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